123ArticleOnline Logo
Welcome to 123ArticleOnline.com!
ALL >> Business >> View Article

Industrial Channel Pressure Blower

Profile Picture
By Author: Oleg Tchechel
Total Articles: 30
Comment this article
Facebook ShareTwitter ShareGoogle+ ShareTwitter Share

Most regenerative blowers are single stage: the air travels around the blower housing once and is discharged. Two-stage regenerative blowers can provide almost twice the pressure or vacuum of single-stage units. In a single-impeller, two-stage unit, air makes one revolution around the front side of the impeller. Then, instead of being discharged, the air is channeled to the backside of the impeller through internal porting. Air then makes another revolution around the backside of the impeller before it is discharged. Other two-stage configurations are also available, including designs that use two separate impellers in one housing or two impellers and housings.

Regenerative blowers are ideal for moving large volumes of air at low pressures or vacuums. Unlike positive displacement compressors and vacuum pumps, they pressurize air through a nonpositive displacement method. Typical regenerative blower applications include sewage aeration, vacuum lifting, vacuum packaging, pneumatic conveying, concrete aeration, pond aeration, vacuum tables, drying, dust/smoke removal, air sparging, and chip removal.

Of all air handling ...
... equipment, regenerative blowers are probably the least understood. However, when system parameters fall within their range, they can be among the most cost-effective methods for moving air and producing pressure or vacuum.

Regenerative blowers are sometimes called side channel blowers or ring compressors, terms that refer to their physical construction. They can be direct or belt driven. In direct drives, the impeller is mounted on an electric motor shaft. The number, size, and angle of the blades on the impeller determine pneumatic performance as well as the relationship between the impeller and housing. Some blowers have rather flat performance curves while others have steep ones.

The impeller spins within a housing with an inboard and outboard channel. It is from this configuration that the name side channel blower is drawn. As the impeller blades pass the inlet port, they draw air in. The impeller rotation pushes air outward and forward into the channels. The air then returns to the base of the blade. As the impeller spins, the process repeats. This regeneration gives the blower its pressure/vacuum capabilities.

Among the major benefits of a regenerative blower is its lack of maintenance and monitoring requirements. The impeller is the only moving part and is wear free and does not come in contact with the housing channels. Self-lubricated bearings are the only parts that wear.

Regenerative blowers are oilless and have no complicated intake / exhaust valving. Most can be mounted in any plane and, with dynamically balanced impellers, generate little vibration. Because they are nonpositive displacement compressor/vacuum pumps, they discharge air that is clean and pulsation free, which are important considerations for today's plant instruments and controls.

The majority of blower failures are caused by improper installation or operation. Regenerative blowers have close internal clearances between the impeller and housing. It is important to prevent foreign material from entering that space. Ingested debris wedging between the impeller and housing can cause the blower to lock up and lead to a catastrophic failure. A blower should always be equipped with an intake filter. A 10-micron size is usually adequate. Filters must be kept clean. A blocked filter will starve flow.

Over-pressurization can also cause deadheading (zero airflow through the blower) and catastrophic failure. Some blowers tolerate deadheading, but other models (typically those above 1 hp) must have air passing through them for cooling. If air does not pass through the blower, heat builds up in the impeller causing it to expand at a faster rate than the housing. Eventually the impeller locks up with the housing and the blower fails. A relief valve prevents overpressurization and deadheading conditions and allows air to pass through the blower.

Additional information can be found at the AB Blower company web site http://www.barryfan.com

Oleg Tchechel
Developer of Industrial Air Make-Up Units
AB Blower Co.
nis@primus.ca
http://www.barryfan.com/products.html
http://www.barryfan.com/feedback.html

Total Views: 270Word Count: 619See All articles From Author

Add Comment

Business Articles

1. Lucintel Forecasts The Canadian Residential Humidifier Market To Reach $234 Million By 2030
Author: Lucintel LLC

2. Boost Your Property’s Value With High-quality Driveway Installations
Author: Vikram kumar

3. Eco-friendly Expertise: Leed Consultancy In Dubai And Uae
Author: kohan

4. Best Travel Websites
Author: RishiHassan

5. Top 5 Essential Dog Training Equipment For Active Dogs: Harnesses, Crates & More
Author: Von Ultimate Dog Shop

6. Mindpath Technology Limited – Transforming Businesses With Innovative It Solutions
Author: Mindpath

7. What Are The Costs Of Charging At Public Stations Vs. Home Chargers?
Author: -

8. When To Diy And When To Call The Professionals
Author: Maria Marshall

9. Uniquemark Solutions: Your Trusted Digital Partner In Pune
Author: Uniquemarks

10. The Ultimate Guide To Optimizing Your Website For Conversions
Author: Peggy Police

11. The Advantages Of Using Walnut Shells In Media Blasting For Industrial Applications
Author: Kramer

12. How To Make Iso 35001 Documentation For Biorisk Management System
Author: Emma

13. How To Make Your Product Photography Stand Out
Author: Sam

14. Experienced House Removalists Brisbane | Quality Packing & Moving Services
Author: Sarahwilliams

15. Best Astrologer In Kacharakanahalli
Author: Astroservice7

Login To Account
Login Email:
Password:
Forgot Password?
New User?
Sign Up Newsletter
Email Address: