ALL >> Others >> View Article
Applications Of The Normal Distribution
Shop Replica Watches for men and ladies at Top-Watches-Brand.com. Search for fashion dress watches, luxury diamond watches or gold watches. The unique design and high quality of the Rolex replica watches has attracted many of its suporters worldwide.The normal distribution is very important in statistical inference. We should realize, however, that it is not a natural law that we encounter each time we analyze a continuous random variable. The normal distribution is a theoretical or ideal, distribution. No set of measurements conforms exactly to its specifications. Many sets of measurements, however, are approximately normally distributed. In such cases, the normal distribution is quite useful when we try to answer practical questions regarding these data.
In particular, whenever a set of measurements is approximately normally distributed, we can find the probability of occurrence of values within any specific interval, just as we can with the standard normal distribution. We can do this because we can ...
... easily transform any normal distribution with a known mean JJL and standard deviation CT to the standard normal distribution. Once we have made this transformation, we can use a table of standard normal areas to find relevant probabilities.
We can transform a normal distribution to the standard normal distribution using the formula z=(x- (JL)/CT. This transforms any value of x in an original distribution with mean) x and standard deviation CT to the corresponding value of z in the standard normal distribution.
The Normal Approximation to the Binomial
The normal distribution gives a good approximation to the binomial distribution when n is large and p is not too close to 0 or 1. This enables us to calculate probabilities for large binomial samples for which binomial tables are not available. A good rule of thumb is that the normal approximation to the binomial is appropriate when np and n(l - p) are both greater than 5. To normally distributed, we can make more powerful probability statements than we could fusing Chebyshev's theorem.
The normal distribution is completely determined by its parameters u, and cr. That is, each different value of JJL or o~ specifies a different normal distribution.
The Standard Normal Distribution
The normal distribution is really a family of distributions in which one member is distinguished from another on the basis of the values of |x and a. In other words, as already indicated, there is a different normal distribution for each different value of either |x or a.
The most important member of this family of distributions is the standard normal distribution, which has a mean of 0 and a standard deviation of 1. We usually use the letter z for the random variable that results from the standard normal distribution. The probability that z lies between any two points on the z axis is determined by the area bounded by perpendiculars erected at each of these points, the curve, and the horizontal axis. We find areas under the curve of a continuous distribution by integrating the function between two values of the variable. There are tables that give the results of integrations in which we might be interested. The table of the standard normal distribution may be presented in many different forms.
Applications of the Normal Distribution
The normal distribution is very important in statistical inference. We should realize, however, that it is not a natural law that we encounter each time we analyze a continuous random variable. The normal distribution is a theoretical or ideal, distribution. No set of measurements conforms exactly to its specifications. Many sets of measurements, however, are approximately normally distributed. In such cases, the normal distribution is quite useful when we try to answer practical questions regarding these data.
In particular, whenever a set of measurements is approximately normally distributed, we can find the probability of occurrence of values within any specific interval, just as we can with the standard normal distribution. We can do this because we can easily transform any normal distribution with a known mean ju, and standard deviation a to the standard normal distribution.
Once we have made this transformation, we can use a table of standard normal areas to find relevant probabilities.
We can transform a normal distribution to the standard normal distribution using the formula z = (x- (x)/a. This transforms any value of x in an original distribution with mean u- and standard deviation CT to the corresponding value of z in the standard normal distribution.
The Normal Approximation to the Binomial
The normal distribution gives a good approximation to the binomial distribution when n is large and p is not too close to 0 or 1. This enables us to calculate probabilities for large binomial samples for which binomial tables are not available. We convert values of the original variable to values of z to find the probabilities of interest.
The Continuity Correction. The normal distribution is continuous and the binomial is discrete. Therefore we get better results if we make an adjustment to account for this when we use the approximation. The need for such an adjustment, called the continuity correction, is evident when we compare a histogram constructed from binomial data with a superimposed smooth curve.
Add Comment
Others Articles
1. Prayer Against Evil Spirits And Powers: A Spiritual Shield Against DarknessAuthor: Exorcism Demon Casting
2. Top Safety Tips For Operating Benchtop Catering Equipment In Sydney & Brisbane
Author: Leading Catering
3. Fighting Demonic Attacks: Understanding And Overcoming Spiritual Warfare
Author: Exorcism Demon Casting
4. Top 5 Reasons To Pursue A Weld Inspection Certification For Career Growth
Author: Bradly Franklin
5. Vashikaran Astrologer In Kolhapur
Author: astrology53
6. Symptoms Of Demonic Possession: Understanding The Unseen
Author: Exorcism Demon Casting
7. 6.6 Kw Solar System: Why It’s A Game-changer For Small To Medium Homes
Author: Solar Junction
8. Monoline Lenders Vancouver – Why Should You Choose Them
Author: Dominion Lending Centres Ratefair
9. Step-by-step Ghost Mannequin Photo Editing Tutorial For Stunning Apparel Images
Author: Robert Charles
10. Key Hospitality Technology Innovations You Should Be Ready For In 2025
Author: Orson Amiri
11. Emerging Media And Entertainment Tech: Are You Ready For The Future
Author: Orson Amiri
12. Window Tinting Auckland: Add A Feeling Of Comfort And Privateness To Your Home
Author: Tinting Experts
13. Top 10 Welding Rod Electrodes Manufacturers In India
Author: SUPERON is one of India’s largest manufacturers of
14. Know About The Future Of Cnc Machining
Author: Ryan
15. Best Astrologer In Tirunelveli
Author: srivaishnavimatha